Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Sci China Life Sci ; 65(2): 328-340, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34482518

RESUMO

Engineered nanocarriers have been widely developed for tumor theranostics. However, the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge. Here, by using tailor-functionalized human H-ferritin (HFn), we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues. Then, we developed an HFn-doxorubicin (Dox) drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy. The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation, and the triple-modality imaging techniques, namely, near-infrared fluorescence molecular imaging (NIR-FMI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI), ensured the accuracy of detection. Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage, followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1. Thus, the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage. IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.


Assuntos
Ferritinas/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Animais , Antígenos CD/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Detecção Precoce de Câncer , Ferritinas/química , Ferritinas/metabolismo , Células Hep G2 , Humanos , Indóis/administração & dosagem , Indóis/química , Inflamação , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Imagem Multimodal , Neoplasias/metabolismo , Técnicas Fotoacústicas , Ligação Proteica , Receptores da Transferrina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884973

RESUMO

Stimuli-responsive nanoparticles are regarded as an ideal candidate for anticancer drug targeting. We synthesized glutathione (GSH) and magnetic-sensitive nanocomposites for a dual-targeting strategy. To achieve this goal, methoxy poly (ethylene glycol) (MePEG) was grafted to water-soluble chitosan (abbreviated as ChitoPEG). Then doxorubicin (DOX) was conjugated to the backbone of chitosan via disulfide linkage. Iron oxide (IO) magnetic nanoparticles were also conjugated to the backbone of chitosan to provide magnetic sensitivity. In morphological observation, images from a transmission electron microscope (TEM) showed that IO nanoparticles were embedded in the ChitoPEG/DOX/IO nanocomposites. In a drug release study, GSH addition accelerated DOX release rate from nanocomposites, indicating that nanocomposites have redox-responsiveness. Furthermore, external magnetic stimulus concentrated nanocomposites in the magnetic field and then provided efficient internalization of nanocomposites into cancer cells in cell culture experiments. In an animal study with CT26 cell-bearing mice, nanocomposites showed superior magnetic sensitivity and then preferentially targeted tumor tissues in the field of external magnetic stimulus. Nanocomposites composed of ChitoPEG/DOX/IO nanoparticle conjugates have excellent anticancer drug targeting properties.


Assuntos
Quitosana/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Glutationa/química , Nanopartículas de Magnetita/administração & dosagem , Polietilenoglicóis/química , Polímeros/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Quitosana/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Doxorrubicina/química , Humanos , Nanopartículas de Magnetita/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
ACS Appl Mater Interfaces ; 13(38): 45315-45324, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520665

RESUMO

Active targeted therapy for bowel cancer using untethered microrobots has attracted extensive attention. However, traditional microrobots face challenges, such as issues of mobility, biocompatibility, drug loading, sustained-release capabilities, and targeting accuracy. Here, we propose an untethered triple-configurational magnetic robot (TCMR) that is composed of three geometrically nested parts: actuation and guarding, anchoring and seeding, and drug release part. A targeting magnetic driving system actuates the TCMR along the predetermined trajectory to the target position. The pH-sensitive actuation and guarding part formed by electrodeposition is degraded in the intestinal environment and separates from the two other parts. A majority of magnetic nanoparticles encapsulated in this part are retrieved. The anchoring and seeding part anchors the lesion area and seeds the drug release part in the gaps of intestinal villi by hydrolysis. Ultimately, the drug release part containing the therapeutic completes the sustained release to prolong the duration of the therapeutic agent. Cytotoxicity and therapeutic tests reveal that TCMRs are biocompatible and suitable for targeted therapy and have good therapeutic performance. The newly designed TCMR will provide new ideas for targeted therapy, thus expanding the application scope of robotics technology in the biomedical field.


Assuntos
Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Administração Oral , Alginatos/administração & dosagem , Alginatos/química , Alginatos/toxicidade , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/toxicidade , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fenômenos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/toxicidade , Camundongos , Nanomedicina/instrumentação , Nanomedicina/métodos
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445603

RESUMO

In magnetic hyperthermia, magnetic nanoparticles (MNPs) are used to generate heat in an alternating magnetic field to destroy cancerous cells. This field can be continuous or pulsed. Although a large amount of research has been devoted to studying the efficiency and side effects of continuous fields, little attention has been paid to the use of pulsed fields. In this simulation study, Fourier's law and COMSOL software have been utilized to identify the heating power necessary for treating breast cancer under blood flow and metabolism to obtain the optimized condition among the pulsed powers for thermal ablation. The results showed that for small source diameters (not larger than 4 mm), pulsed powers with high duties were more effective than continuous power. Although by increasing the source domain the fraction of damage caused by continuous power reached the damage caused by the pulsed powers, it affected the healthy tissues more (at least two times greater) than the pulsed powers. Pulsed powers with high duty (0.8 and 0.9) showed the optimized condition and the results have been explained based on the Arrhenius equation. Utilizing the pulsed powers for breast cancer treatment can potentially be an efficient approach for treating breast tumors due to requiring lower heating power and minimizing side effects to the healthy tissues.


Assuntos
Neoplasias da Mama/terapia , Simulação por Computador , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Modelos Teóricos , Software , Feminino , Humanos , Nanopartículas de Magnetita/química
5.
Cell Cycle ; 20(12): 1122-1133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110969

RESUMO

Magnetic hyperthermia (MHT), which combines magnetic nanoparticles (MNPs) with an alternating magnetic field (AMF), holds promise as a cancer therapy. There have been many studies about hyperthermia, most of which have been performed by direct injection of MNPs into tumor tissues. However, there have been no reports of treating peritoneal disseminated disease with MHT to date. In the present study, we treated peritoneal metastasis of gastric cancer with MHT using superparamagnetic iron oxide (Fe3O4) nanoparticle (SPION) coated with carboxydextran as an MNP, in an orthotopic mouse model mimicking early peritoneal disseminated disease of gastric cancer. SPIONs of an optimal size were intraperitoneally administered, and an AMF (390 kHz, 28 kAm-1) was applied for 10 minutes, four times every three days. Three weeks after the first MHT treatment, the peritoneal metastases were significantly inhibited compared with the AMF-alone group or the untreated-control group. The results of the present study show that MHT can be applied as a new treatment option for disseminated peritoneal gastric cancer.Abbreviations: AMF: alternating magnetic field; Cy1: cytology-positive; DMEM: Dulbecco's Modified Eagle's Medium; FBS: fetal bovine serum; H&E: hematoxylin and eosin; HIPEC: hyperthermic intraperitoneal chemotherapy; MEM: Minimum Essential Medium; MHT: magnetic hyperthermia; MNPs: magnetic nanoparticles; P0: macroscopic peritoneal dissemination; RFP: red fluorescent protein; SPION: superparamagnetic iron oxide (Fe3O4) nanoparticle.


Assuntos
Hipertermia Induzida/métodos , Ferro/administração & dosagem , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Óxidos/administração & dosagem , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/terapia , Neoplasias Gástricas/patologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Células HCT116 , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica/métodos , Resultado do Tratamento , Proteína Vermelha Fluorescente
6.
Mol Neurobiol ; 58(8): 3835-3847, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33860441

RESUMO

Among the various therapeutic procedures used for improving PD, stem cell-based therapy has been shown to be a promising method. Olfactory ectomesenchymal stem cells (OE-MSCs) are a great source of stem cells for PD. Also, the intranasal administration (INA) of stem cells to the neural lesion has several advantages over the other approaches to cellular injections. However, improving the efficacy of INA to produce the highest number of cells at the lesion site has always been a controversial issue. For this purpose, this study was designed to apply the magnetically targeted cell delivery (MTCD) approach to OE-MSCs in the injured striatum area through the IN route in order to explore their outcomes in rat models of PD. Animals were randomly classified into four groups including control, PD model, treatment-NTC (treated with INA of non-target cells), and treatment-TC (treated with INA of target cells). The Alg-SPIONs-labeled OE-MSCs were stained successfully using the Prussian blue method with an intracellular iron concentration of 2.73 pg/cell. It was able to reduce signal intensity in the striatum region by increasing the number of these cells, as shown by the magnetic resonance imaging (MRI). Behavioral evaluation revealed that the administration of OE-MSCs with this novel advanced stem cell therapy alleviated Parkinson's motor dysfunction. Further, histological evaluations confirmed the functional enhancement of dopaminergic neuron cells by the expression of Nurr1, Dopamine transporter (DAT), and paired-like homeodomain transcription factor 3 (TH). Overall, this study showed that INA of OE-MSCs in the MTCD approach enhanced stem cells' therapeutic effects in PD models.


Assuntos
Nanopartículas de Magnetita/administração & dosagem , Mucosa Olfatória/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Transplante de Células-Tronco/métodos , Administração Intranasal , Animais , Células Cultivadas , Terapia Combinada , Humanos , Masculino , Mucosa Olfatória/efeitos dos fármacos , Ratos , Ratos Wistar , Resultado do Tratamento
7.
Life Sci ; 275: 119377, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33757771

RESUMO

AIMS: Silibinin offers potential anticancer effect with less aqueous solubility and high permeability. The present study aimed to develop biocompatible magnetic-core-based nanopolymeric carriers of poly (D, l-lactide-co-glycolic) acid (PLGA) encapsulated silibinin for the sustained release action on renal cancerous cell. MAIN METHODS: The synthesized iron oxide nanoparticles were prepared by precipitation method via encapsulation of silibinin in PLGA network using double emulsion method. The nanoparticle formulations were characterized for morphological, physicochemical properties (HRTEM, FTIR, Raman Spectroscopy and VSM), in vitro drug release and cytotoxicity study on kidney cancer cells (A-498). The safety of magnetic-core-based silibinin nanopolymeric carriers was conducted by i.v. administration at a dose of 50 mg/kg in mice. KEY FINDINGS: The mean particle size, zeta potential and % encapsulation efficiency of magnetic-core-based silibinin nanopolymeric carriers were found to be 285.9 ± 0.28 nm, -14.71 ± 0.15 mV and 84.76 ± 1.29%, respectively. The saturation magnetization of magnetic core and optimized nanoparticles were reported as 36.35 emu/g and 12.78 emu/g, respectively. HRTEM analyses revealed the spherical shapes of the particles with uniform size distribution. The in vitro release profile of silibinin from the nanoparticles exhibited a sustained delivery for 15 days and displayed better cytotoxicity against human kidney cancer cells (A-498) than silibinin. In vivo study showed the safety of magnetic-core-based silibinin nanopolymeric carriers in mice. SIGNIFICANCE: The magnetic-core-based silibinin nanopolymeric carriers will act as a potential carrier for targeted transportation of actives in cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Portadores de Fármacos , Neoplasias Renais/tratamento farmacológico , Nanopartículas de Magnetita , Silibina/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Humanos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/efeitos adversos , Silibina/administração & dosagem , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
8.
Biomed Res Int ; 2021: 8822645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542927

RESUMO

The biological synthesis of nanoparticles, due to their environmental and biomedical properties, has been of particular interest to scientists and physicians. Here, iron nanoparticles (FeNPs) were synthesized using Satureja hortensis essential oil. Then, the chemical, functional, and morphological properties of these nanoparticles were characterized by typical experiments such as Uv-Vis, FTIR, XRD, FE-SEM, PSA, zeta potential, EDX, and EDX mapping. The results indicated Fe nanoparticles' formation with a cubic morphological structure and a particle size in the range of 9.3-27 nm. The antimicrobial effects of these nanoparticles were further evaluated using disc diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungal concentration (MFC) against two gram-positive bacterial strains (Staphylococcus aureus and Corynebacterium glutamicum), two gram-negative bacterial strains (Pseudomonas aeruginosa and Escherichia coli), and one fungus species Candida albicans. The results showed that green-synthesized Fe nanoparticles possessed higher antimicrobial properties than Satureja hortensis essential oil against selected pathogenic microorganisms, especially Gram-negative bacteria. Finally, the anticancer effect of these Fe nanoparticles was investigated on human cancer cells, K-562, and MCF-7, by the MTT assay. The results showed the anticancer effect of these nanoparticles against selected cell lines.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Óleos Voláteis/administração & dosagem , Satureja/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Fungos/efeitos dos fármacos , Química Verde/métodos , Humanos , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico , Óleos Voláteis/química , Óleos de Plantas/química
9.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578897

RESUMO

Magnetic nanocomposites based on hydroxyapatite were prepared by a one-step process using the hydrothermal coprecipitation method to sinter iron oxides (Fe3O4 and γ-Fe2O3). The possibility of expanding the proposed technique for the synthesis of magnetic composite with embedded biologically active substance (BAS) of the 2-arylaminopyrimidine group was shown. The composition, morphology, structural features, and magnetic characteristics of the nanocomposites synthesized with and without BAS were studied. The introduction of BAS into the composite synthesis resulted in minor changes in the structural and physical properties. The specificity of the chemical bonds between BAS and the hydroxyapatite-magnetite core was revealed. The kinetics of the BAS release in a solution simulating the stomach environment was studied. The cytotoxicity of (HAP)FexOy and (HAP)FexOy + BAS composites was studied in vitro using the primary culture of human liver carcinoma cells HepG2. The synthesized magnetic composites with BAS have a high potential for use in the biomedical field, for example, as carriers for magnetically controlled drug delivery and materials for bone tissue engineering.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Compostos Férricos/química , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas de Magnetita/administração & dosagem , Nanocompostos/química , Pirimidinas/química , Apoptose , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas de Magnetita/química
10.
Nanotheranostics ; 5(2): 182-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564617

RESUMO

Enhanced vascular permeability in tumors plays an essential role in nanoparticle delivery. Prostate-specific membrane antigen (PSMA) is overexpressed on the epithelium of aggressive prostate cancers (PCs). Here, we evaluated the feasibility of increasing the delivery of PSMA-targeted magnetic nanoparticles (MNPs) to tumors by enhancing vascular permeability in PSMA(+) PC tumors with PSMA-targeted photodynamic therapy (PDT). Method: PSMA(+) PC3 PIP tumor-bearing mice were given a low-molecular-weight PSMA-targeted photosensitizer and treated with fluorescence image-guided PDT, 4 h after. The mice were then given a PSMA-targeted MNP immediately after PDT and monitored with fluorescence imaging and T2-weighted magnetic resonance imaging (T2-W MRI) 18 h, 42 h, and 66 h after MNP administration. Untreated PSMA(+) PC3 PIP tumor-bearing mice were used as negative controls. Results: An 8-fold increase in the delivery of the PSMA-targeted MNPs was detected using T2-W MRI in the pretreated tumors 42 h after PDT, compared to untreated tumors. Additionally, T2-W MRIs revealed enhanced peripheral intra-tumoral delivery of the PSMA-targeted MNPs. That finding is in keeping with two-photon microscopy, which revealed higher vascular densities at the tumor periphery. Conclusion: These results suggest that PSMA-targeted PDT enhances the delivery of PSMA-targeted MNPs to PSMA(+) tumors by enhancing the vascular permeability of the tumors.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Fotoquimioterapia , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Biol Macromol ; 172: 55-65, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444653

RESUMO

In this content, a green approach for the ultrasound promoted in situ immobilization of Pd NPs over biodegradable chitosan/agarose modified ferrite NP (Fe3O4@CS-Agarose/Pd) is developed. The structural and physicochemical features of the material were estimated using advanced analytical techniques like FT-IR, ICP-OES, FESEM, EDS, XRD, TEM and VSM. The magnetic material was catalytically explored in the oxidation of alcohols under ultrasonic waves. Sonication had a significant role in enhancing the catalytic performance in the alcohol's oxidation as compared to conventional heating. The heterogeneous nanocatalyst was efficiently recycled up to 10 times with nominal loss in catalytic activity. Towards the biological applications, the Fe3O4@CS-Agarose/Pd nanocomposite showed high antioxidant activities against DPPH free radicals, comparable to standard butylated hydroxytoluene (BHT). In addition, it exhibited excellent cytotoxicity in terms of % cell viability against breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), and metastatic carcinoma (MDA-MB-453) cell lines. The best anti-breast cancer potential of the nanocomposite was observed in Hs 319.T cell line.


Assuntos
Álcoois/química , Plásticos Biodegradáveis/química , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Paládio/química , Sefarose/química , Antioxidantes/química , Compostos de Bifenilo/química , Catálise , Linhagem Celular Tumoral , Feminino , Compostos Férricos/química , Humanos , Magnetismo/métodos , Nanocompostos/química , Oxirredução , Picratos/química , Ondas Ultrassônicas
12.
Eur Surg Res ; 61(4-5): 136-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33333523

RESUMO

INTRODUCTION: Nowadays, surgical excision remains the gold standard to treat liver metastases of colorectal cancer (CRCLM). However, as more than 50% of patients are not eligible for surgery, other alternatives such as percutaneous or intravascular interventional therapies (thermal ablation, chemoembolization, or radioembolization), are quite relevant. Recently, the use of magnetic nanoparticles (MNPs) has been suggested as an adjuvant for these therapies, as they could increase their necrotising effect on the tumour while reducing doses and exposure times of thermal therapies. To investigate the potential curative effect of these compounds, animal models are needed, both for the development of experimental interventional procedures and for MNPs toxicity and distribution assessment. Herein, we describe both an experimental infusion procedure in CRCLM-bearing rats and analytical and histological methods to evaluate MNPs deposits in the tissue. METHODS: Eighteen male WAG/RijHsd rats were subjected to intrahepatic injection of 250,000 colorectal cancer cells. Twenty-eight days later, half of the tumour-positive animals (n = 6) were administered with MNPs while the other half (n = 6) did not receive any injection and were used as control. Under microscope magnification, the splenic artery was carefully and completely dissected, and a catheter was inserted through the splenic artery to the common hepatic artery where 1 mL MNPs suspension was administered in 5 min; then STIR, DP*, and T2 MRI sequences were obtained (and signal intensity measured) and both tumour and liver tissue samples were collected for elemental and histological analyses. CONCLUSION: Our method for selective administration of MNPs is reproducible and well-tolerated and it fairly mimics the approach used in clinical practice when intravascular interventional therapies are applied.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Nanopartículas de Magnetita/administração & dosagem , Animais , Infusões Intra-Arteriais , Neoplasias Hepáticas/patologia , Masculino , Ratos
13.
Int J Nanomedicine ; 15: 8201-8215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122906

RESUMO

BACKGROUND: One major limitation of cancer chemotherapy is a failure to specifically target a tumor, potentially leading to side effects such as systemic cytotoxicity. In this case, we have generated a cancer cell-targeting nanoparticle-liposome drug delivery system that can be activated by near-infrared laser light to enable local photo-thermal therapy and the release of chemotherapeutic agents, which could achieve combined therapeutic efficiency. METHODS: To exploit the magnetic potential of iron oxide, we prepared and characterized citric acid-coated iron oxide magnetic nanoparticles (CMNPs) and encapsulated them into thermo-sensitive liposomes (TSLs). The chemotherapeutic drug, doxorubicin (DOX), was then loaded into the CMNP-TSLs, which were coated with an antibody against the epidermal growth factor receptor (EGFR), cetuximab (CET), to target EGFR-expressing breast cancer cells in vitro and in vivo studies in mouse model. RESULTS: The resulting CET-DOX-CMNP-TSLs were stable with an average diameter of approximately 120 nm. First, the uptake of TSLs into breast cancer cells increased by the addition of the CET coating. Next, the viability of breast cancer cells treated with CET-CMNP-TSLs and CET-DOX-CMNP-TSLs was reduced by the addition of photo-thermal therapy using near-infrared (NIR) laser irradiation. What is more, the viability of breast cancer cells treated with CMNP-TSLs plus NIR was reduced by the addition of DOX to the CMNP-TSLs. Finally, photo-thermal therapy studies on tumor-bearing mice subjected to NIR laser irradiation showed that treatment with CMNP-TSLs or CET-CMNP-TSLs led to an increase in tumor surface temperature to 44.7°C and 48.7°C, respectively, compared with saline-treated mice body temperature ie, 35.2°C. Further, the hemolysis study shows that these nanocarriers are safe for systemic delivery. CONCLUSION: Our studies revealed that a combined therapy of photo-thermal therapy and targeted chemotherapy in thermo-sensitive nano-carriers represents a promising therapeutic strategy against breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/terapia , Lipossomos/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Feminino , Compostos Férricos/química , Humanos , Hipertermia Induzida , Lipossomos/química , Nanopartículas de Magnetita/química , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Commun ; 11(1): 5421, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110072

RESUMO

The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT.


Assuntos
Proteínas de Bactérias/química , Hipertermia Induzida , Nanocompostos/administração & dosagem , Neoplasias/terapia , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Compostos Férricos/química , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Magnetismo , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Masculino , Camundongos Endogâmicos BALB C , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Nanocompostos/química , Neoplasias/genética , Neoplasias/metabolismo , Nanomedicina Teranóstica
15.
Sci Rep ; 10(1): 15447, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963318

RESUMO

In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.


Assuntos
Movimento Celular , Proliferação de Células , Compostos de Ferro/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Teste de Materiais , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita/química , Camundongos , Oxirredução , Tamanho da Partícula
16.
Cancer Invest ; 38(8-9): 507-521, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32870068

RESUMO

Hyperthermic therapy is defined as increasing the temperature of tumor tissues to 40-43 °C that has been effective approach for destroying malignant cells in the field of cancer therapy. Recent line of research has applied different approaches along with hyperthermic treatment to obtain high efficiency and little side effects. Magnetic nanoparticle-based hyperthermia has demonstrated an improved functionality in targeting malignant cells and implement their therapeutic role by heating the tumor cells. Here in this review article, we clarify the diverse aspects of magnetic nanoparticles in the treatment of cancer.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Neoplasias/terapia , Animais , Humanos , Fenômenos Magnéticos , Fototerapia/métodos
17.
Int J Biol Macromol ; 164: 4499-4515, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898537

RESUMO

Herein, thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer-coated magnetic nanoparticles were synthesized via a green and rapid synthetic approach based on microwave irradiation. Firstly, a novel thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer (Pec-g-PolyDMAEMA) was synthesized and then, Pec-g-PolyDMAEMA based magnetic nanoparticles (Pec-g-PolyDMAEMA@Fe3O4) were produced via microwave-assisted co-precipitation method. The thermo/pH/magnetic field multi-sensitive hybrid nanoparticle was characterized by techniques like TEM, VSM, FT-IR, and TGA/DSC. In vitro release studies of 5-Fluorouracil (FL) were carried out by altering the temperature (37 and 44°C), pH (5.5 and 7.4) and presence of an AMF. The FL release of Pec-g-PolyDMAEMA@Fe3O4@FL exhibited pH-sensitive behavior. They showed thermo/pH-sensitive FL release features with the greatest release of FL at 37°C (56%) than at 44°C (40%) and at pH of 7.4 (63%) than at pH of 5.5 (45%) within 48h. The FL release was also significantly increased (100%) with the presence of a 50 mT magnetic field. These results indicate that the developed Pec-g-PolyDMAEMA@Fe3O4 nanoparticles are promising in the application of multi-stimuli-sensitive delivery of drugs.


Assuntos
Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanopartículas de Magnetita , Metacrilatos/química , Pectinas/química , Ácidos Polimetacrílicos/química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/toxicidade , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/toxicidade , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Fluoruracila/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/toxicidade , Camundongos , Transição de Fase , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/farmacologia , Ácidos Polimetacrílicos/toxicidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
18.
Eur J Pharm Biopharm ; 155: 162-176, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32818610

RESUMO

Breast cancer is not only one of the most prevalent types of cancer, but also it is a prime cause of death in women aged between 20 and 59. Although chemotherapy is the most common therapy approach, multiple side effects can result from lack of specificity and the use of overdose as safe doses may not completely cure cancer. Therefore, we aimed in this study is to combine the merits of NF-κB inhibiting potential of celastrol (CST) with glutathione inhibitory effect of sulfasalazine (SFZ) which prevents CST inactivation and thus enhances its anti-tumor activity. Inspired by the CD44-mediated tumor targeting effect of the hydrophilic polysaccharide chondroitin sulphate (ChS), we chemically synthesized amphiphilic zein-ChS micelles. While the water insoluble SFZ was chemically coupled to zein, CST was physically entrapped within the hydrophobic zein/SFZ micellar core. Moreover, physical encapsulation of oleic acid-capped SPIONs in the hydrophobic core of micelles enabled both magnetic tumor targeting as well as MRI theranostic capacity. Combining magnetic targeting to with the active targeting effect of ChS resulted in enhanced cellular internalization of the micelles in MCF-7 cancer cells and hence higher cytotoxic effect against MCF-7 and MDA-MB-231 breast cancer cells. In the in vivo experiments, magnetically-targeted micelles (154.4 nm) succeeded in achieving the lowest percentage increase in the tumor volume in tumor bearing mice, the highest percentage of tumor necrosis associated with significant reduction in the levels of TNF-α, Ki-67, NF-κB, VEGF, COX-2 markers compared to non-magnetically targeted micelles-, free drug-treated and positive control groups. Collectively, the developed magnetically targeted micelles pave the way for design of cancer nano-theranostic drug combinations.


Assuntos
Antineoplásicos/administração & dosagem , Glutationa/antagonistas & inibidores , Nanopartículas de Magnetita/administração & dosagem , Micelas , NF-kappa B/antagonistas & inibidores , Nanomedicina/métodos , Animais , Antineoplásicos/metabolismo , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Sinergismo Farmacológico , Glutationa/metabolismo , Humanos , Células MCF-7 , Camundongos , NF-kappa B/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Sci Rep ; 10(1): 10530, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601333

RESUMO

The purpose of this study was to construct and characterize iron oxide nanoparticles (IONPCO) for intracellular delivery of the anthracycline doxorubicin (DOX; IONPDOX) in order to induce tumor cell inactivation. More than 80% of the loaded drug was released from IONPDOX within 24 h (100% at 70 h). Efficient internalization of IONPDOX and IONPCO in HeLa cells occurred through pino- and endocytosis, with both IONP accumulating in a perinuclear pattern. IONPCO were biocompatible with maximum 27.9% ± 6.1% reduction in proliferation 96 h after treatment with up to 200 µg/mL IONPCO. Treatment with IONPDOX resulted in a concentration- and time-dependent decrease in cell proliferation (IC50 = 27.5 ± 12.0 µg/mL after 96 h) and a reduced clonogenic survival (surviving fraction, SF = 0.56 ± 0.14; versus IONPCO (SF = 1.07 ± 0.38)). Both IONP constructs were efficiently internalized and retained in the cells, and IONPDOX efficiently delivered DOX resulting in increased cell death vs IONPCO.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Nanopartículas de Magnetita/administração & dosagem , Transporte Biológico/efeitos dos fármacos , Células HeLa , Humanos
20.
Int J Nanomedicine ; 15: 4677-4689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669844

RESUMO

BACKGROUND: Superparamagnetic iron oxide nanoparticles (SPIONs) have displayed multifunctional applications in cancer theranostics following systemic delivery. In an effort to increase the therapeutic potential of local therapies (including focal hyperthermia), nanoparticles can also be administered intratumorally. Therefore, the development of a reliable pharmacokinetic model for the prediction of nanoparticle distribution for both clinically relevant routes of delivery is of high importance. MATERIALS AND METHODS: The biodistribution of SPIONs (of two different sizes - 130 nm and 60 nm) radiolabeled with zirconium-89 or technetium-99m following intratumoral or intravenous injection was investigated in C57/Bl6 mice bearing subcutaneous GL261 glioblastomas. Based on PET/CT biodistribution data, a novel pharmacokinetic model was established for a better understanding of the pharmacokinetics of the SPIONs after both administration routes. RESULTS: The PET image analysis of the nanoparticles (confirmed by histology) demonstrated the presence of radiolabeled nanoparticles within the glioma site (with low amounts in the liver and spleen) at all investigated time points following intratumoral injection. The mathematical model confirmed the dynamic nanoparticle redistribution in the organism over a period of 72 h with an equilibrium reached after 100 h. Intravenous injection of nanoparticles demonstrated a different distribution pattern with a rapid particle retention in all organs (particularly in liver and spleen) and a subsequent slow release rate. CONCLUSION: The mathematical model demonstrated good agreement with experimental data derived from tumor mouse models suggesting the value of this tool to predict the real-time pharmacokinetic features of SPIONs in vivo. In the future, it is planned to adapt our model to other nanoparticle formulations to more precisely describe their biodistribution in in vivo model systems.


Assuntos
Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Glioblastoma/diagnóstico por imagem , Nanopartículas de Magnetita/administração & dosagem , Animais , Feminino , Glioblastoma/patologia , Injeções , Injeções Intravenosas , Nanopartículas de Magnetita/química , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos/farmacocinética , Tecnécio/farmacocinética , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA